FUNÇÕES GRACELI [ZETA, DELTA, GAMA, ETA, E OUTRAS [10]
SUPERFÍCIES, CURVAS E ESFERAS DE GRACELI.
COS Π
INTEGRAIS, SOMAS E SÉRIES DE GRACELI.
séries e integrais de Graceli.
Esta lista de séries matemáticas contém fórmulas para somas finitas e infinitas. Ela pode ser usada em conjunto com outras ferramentas para avaliar somas.
-S / PW
pg
COS
Π Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/
Gn [ k[pr]
ph] =
integrais de funções EXPONENCIAIS , RACIONAIS, IRRACIONAIS NO SISTEMA PROGRESSIMAL INFINTESIMAL DE GRACELI.
A lista seguinte contém integrais de funções exponenciais .
Integral Exponencial:
{\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}} / / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(para }}a>0,{\mbox{ }}a\neq 1{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}dx}{x^{n-1}}}\right)\qquad {\mbox{(para }}n\neq 1{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2\sigma }}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int e^{x^{2}}\,dx=e^{x^{2}}\left(\sum _{r=1}^{n}{\frac {1}{2^{n}x^{2n-1}}}\right)+{\frac {2n-1}{2^{n}}}\int {\frac {e^{x^{2}}\;dx}{x^{2n}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,dx={\sqrt {\pi \over a}}} / [Gn]= 1/ Gn [ k[pr] ph] = A seguinte lista contém integrais de funções racionais .
Para {\displaystyle a\not =0}
{\displaystyle \int (ax+b)^{n}dx={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{ax+b}}={\frac {1}{a}}\ln \left|ax+b\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x(ax+b)^{n}dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(for }}n\not \in \{1,2\}{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x}{ax+b}}dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(for }}n\not \in \{1,2\}{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}}{ax+b}}dx={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx={\frac {1}{a^{3}}}\left(-{\frac {1}{(n-3)(ax+b)^{n-3}}}+{\frac {2b}{(n-2)(a+b)^{n-2}}}-{\frac {b^{2}}{(n-1)(ax+b)^{n-1}}}\right)\qquad {\mbox{(for }}n\not \in \{1,2,3\}{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x(ax+b)}}=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x^{2}(ax+b)}}=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x^{2}(ax+b)^{2}}}=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\,\mathrm {arctanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\mbox{(for }}|x|<|a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\,\mathrm {arccoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\mbox{(for }}|x|>|a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}=-{\frac {2}{2ax+b}}\qquad {\mbox{(for }}4ac-b^{2}=0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}} {\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\qquad {\mbox{(for }}4ac-b^{2}=0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{(ax^{2}+bx+c)^{n}}}={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx=-{\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}} {\displaystyle \int {\frac {dx}{x(ax^{2}+bx+c)}}={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {dx}{ax^{2}+bx+c}}} / [Gn]= 1/ Gn [ k[pr] ph] = A lista seguinte contém integrais de funções irracionais .
Integrais envolvendo {\displaystyle r={\sqrt {a^{2}+x^{2}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int r\;dx={\frac {1}{2}}\left(xr+a^{2}\,\ln \left({\frac {x+r}{a}}\right)\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int r^{3}\;dx={\frac {1}{4}}xr^{3}+{\frac {1}{8}}3a^{2}xr+{\frac {3}{8}}a^{4}\ln \left({\frac {x+r}{a}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int r^{5}\;dx={\frac {1}{6}}xr^{5}+{\frac {5}{24}}a^{2}xr^{3}+{\frac {5}{16}}a^{4}xr+{\frac {5}{16}}a^{6}\ln \left({\frac {x+r}{a}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int xr\;dx={\frac {r^{3}}{3}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int xr^{3}\;dx={\frac {r^{5}}{5}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int xr^{2n+1}\;dx={\frac {r^{2n+3}}{2n+3}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{2}r\;dx={\frac {xr^{3}}{4}}-{\frac {a^{2}xr}{8}}-{\frac {a^{4}}{8}}\ln \left({\frac {x+r}{a}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{2}r^{3}\;dx={\frac {xr^{5}}{6}}-{\frac {a^{2}xr^{3}}{24}}-{\frac {a^{4}xr}{16}}-{\frac {a^{6}}{16}}\ln \left({\frac {x+r}{a}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{3}r\;dx={\frac {r^{5}}{5}}-{\frac {a^{2}r^{3}}{3}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{3}r^{3}\;dx={\frac {r^{7}}{7}}-{\frac {a^{2}r^{5}}{5}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{3}r^{2n+1}\;dx={\frac {r^{2n+5}}{2n+5}}-{\frac {a^{3}r^{2n+3}}{2n+3}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{4}r\;dx={\frac {x^{3}r^{3}}{6}}-{\frac {a^{2}xr^{3}}{8}}-{\frac {a^{4}xr}{16}}+{\frac {a^{6}}{16}}\ln \left({\frac {x+r}{a}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{4}r^{3}\;dx={\frac {x^{3}r^{5}}{8}}-{\frac {a^{2}xr^{5}}{16}}-{\frac {a^{4}xr^{3}}{64}}+{\frac {3a^{6}xr}{128}}+{\frac {3a^{8}}{128}}\ln \left({\frac {x+r}{a}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{5}r\;dx={\frac {r^{7}}{7}}-{\frac {2a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{5}r^{3}\;dx={\frac {r^{9}}{9}}-{\frac {2a^{2}r^{7}}{7}}+{\frac {a^{4}r^{5}}{5}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int x^{5}r^{2n+1}\;dx={\frac {r^{2n+7}}{2n+7}}-{\frac {2a^{2}r^{2n+5}}{2n+5}}+{\frac {a^{4}r^{2n+3}}{2n+3}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {r\;dx}{x}}=r-a\ln \left|{\frac {a+r}{x}}\right|=r-a\sinh ^{-1}{\frac {a}{x}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {r^{3}\;dx}{x}}={\frac {r^{3}}{3}}+a^{2}r-a^{3}\ln \left|{\frac {a+r}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {r^{5}\;dx}{x}}={\frac {r^{5}}{5}}+{\frac {a^{3}r^{3}}{3}}+a^{4}r-a^{5}\ln \left|{\frac {a+r}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {r^{7}\;dx}{x}}={\frac {r^{7}}{7}}+{\frac {a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}+a^{6}r-a^{7}\ln \left|{\frac {a+r}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{r}}=\sinh ^{-1}{\frac {x}{a}}=\ln \left|x+r\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{r^{3}}}={\frac {x}{a^{2}r}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\,dx}{r}}=r} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{r}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\,\sinh ^{-1}{\frac {a}{x}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\ln \left|x+r\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{xr}}=-{\frac {1}{a}}\,\sinh ^{-1}{\frac {a}{x}}=-{\frac {1}{a}}\ln \left|{\frac {a+r}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = Integrais envolvendo {\displaystyle s={\sqrt {x^{2}-a^{2}}}} / [Gn]= 1/ Gn [ k[pr] ph] = Assuma {\displaystyle (x^{2}>a^{2})} , for {\displaystyle (x^{2}<a^{2})} , ver próxima secção:
{\displaystyle \int xs\;dx={\frac {1}{3}}s^{3}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {s\;dx}{x}}=s-a\cos ^{-1}\left|{\frac {a}{x}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{s}}=\int {\frac {dx}{\sqrt {x^{2}-a^{2}}}}=\ln \left|{\frac {x+s}{a}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = Note que {\displaystyle \ln \left|{\frac {x+s}{a}}\right|=\mathrm {sgn} (x)\cosh ^{-1}\left|{\frac {x}{a}}\right|={\frac {1}{2}}\ln \left({\frac {x+s}{x-s}}\right)} ,
{\displaystyle \int {\frac {x\;dx}{s}}=s} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{s^{3}}}=-{\frac {1}{s}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{s^{5}}}=-{\frac {1}{3s^{3}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{s^{7}}}=-{\frac {1}{5s^{5}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{s^{2n+1}}}=-{\frac {1}{(2n-1)s^{2n-1}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=-{\frac {1}{2n-1}}{\frac {x^{2m-1}}{s^{2n-1}}}+{\frac {2m-1}{2n-1}}\int {\frac {x^{2m-2}\;dx}{s^{2n-1}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{s}}={\frac {xs}{2}}+{\frac {a^{2}}{2}}\ln \left|{\frac {x+s}{a}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{s^{3}}}=-{\frac {x}{s}}+\ln \left|{\frac {x+s}{a}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{4}\;dx}{s}}={\frac {x^{3}s}{4}}+{\frac {3}{8}}a^{2}xs+{\frac {3}{8}}a^{4}\ln \left|{\frac {x+s}{a}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{4}\;dx}{s^{3}}}={\frac {xs}{2}}-{\frac {a^{2}x}{s}}+{\frac {3}{2}}\ln \left|{\frac {x+s}{a}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{4}\;dx}{s^{5}}}=-{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}+\ln \left|{\frac {x+s}{a}}\right|} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=(-1)^{n-m}{\frac {1}{a^{2(n-m)}}}\sum _{i=0}^{n-m-1}{\frac {1}{2(m+i)+1}}{n-m-1 \choose i}{\frac {x^{2(m+i)+1}}{s^{2(m+i)+1}}}\qquad {\mbox{(}}n>m\geq 0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{s^{3}}}=-{\frac {1}{a^{2}}}{\frac {x}{s}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{s^{5}}}={\frac {1}{a^{4}}}\left[{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}\right]} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{s^{7}}}=-{\frac {1}{a^{6}}}\left[{\frac {x}{s}}-{\frac {2}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{s^{9}}}={\frac {1}{a^{8}}}\left[{\frac {x}{s}}-{\frac {3}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {3}{5}}{\frac {x^{5}}{s^{5}}}-{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{s^{5}}}=-{\frac {1}{a^{2}}}{\frac {x^{3}}{3s^{3}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{s^{7}}}={\frac {1}{a^{4}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{s^{9}}}=-{\frac {1}{a^{6}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {2}{5}}{\frac {x^{5}}{s^{5}}}+{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]} / [Gn]= 1/ Gn [ k[pr] ph] = Integrais envolvendo {\displaystyle t={\sqrt {a^{2}-x^{2}}}} {\displaystyle \int t\;dx={\frac {1}{2}}\left(xt+a^{2}\sin ^{-1}{\frac {x}{a}}\right)\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int xt\;dx=-{\frac {1}{3}}t^{3}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {t\;dx}{x}}=t-a\ln \left|{\frac {a+t}{x}}\right|\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{t}}=\sin ^{-1}{\frac {x}{a}}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x^{2}\;dx}{t}}=-{\frac {x}{2}}t+{\frac {a^{2}}{2}}\sin ^{-1}{\frac {x}{a}}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int t\;dx={\frac {1}{2}}\left(xt-\operatorname {sgn} x\,\cosh ^{-1}\left|{\frac {x}{a}}\right|\right)\qquad {\mbox{(for }}|x|\geq |a|{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = Integrais envolvendo {\displaystyle R^{1/2}={\sqrt {ax^{2}+bx+c}}} {\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}={\frac {1}{\sqrt {a}}}\ln \left|2{\sqrt {aR}}+2ax+b\right|\qquad {\mbox{(for }}a>0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}={\frac {1}{\sqrt {a}}}\,\sinh ^{-1}{\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{\sqrt {ax^{2}+bx+c}}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{)}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{\sqrt {(ax^{2}+bx+c)^{3}}}}={\frac {4ax+2b}{(4ac-b^{2}){\sqrt {R}}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{\sqrt {(ax^{2}+bx+c)^{5}}}}={\frac {4ax+2b}{3(4ac-b^{2}){\sqrt {R}}}}\left({\frac {1}{R}}+{\frac {8a}{4ac-b^{2}}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{\sqrt {(ax^{2}+bx+c)^{2n+1}}}}={\frac {4ax+2b}{(2n-1)(4ac-b^{2})R^{(2n-1)/2}}}+{\frac {8a(n-1)}{(2n-1)(4ac-b^{2})}}\int {\frac {dx}{R^{(2n-1)/2}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{\sqrt {ax^{2}+bx+c}}}={\frac {\sqrt {R}}{a}}-{\frac {b}{2a}}\int {\frac {dx}{\sqrt {R}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{\sqrt {(ax^{2}+bx+c)^{3}}}}=-{\frac {2bx+4c}{(4ac-b^{2}){\sqrt {R}}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {x\;dx}{\sqrt {(ax^{2}+bx+c)^{2n+1}}}}=-{\frac {1}{(2n-1)aR^{(2n-1)/2}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{(2n+1)/2}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x{\sqrt {ax^{2}+bx+c}}}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {cR}}+bx+2c}{x}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x{\sqrt {ax^{2}+bx+c}}}}=-{\frac {1}{\sqrt {c}}}\sinh ^{-1}\left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)} / [Gn]= 1/ Gn [ k[pr] ph] = Integrais envolvendo {\displaystyle R^{1/2}={\sqrt {ax+b}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {dx}{x{\sqrt {ax+b}}}}\,=\,{\frac {-2}{\sqrt {b}}}\tanh ^{-1}{\sqrt {\frac {ax+b}{b}}}} / [Gn]= 1/ Gn [ k[pr] ph] = {\displaystyle \int {\frac {\sqrt {ax+b}}{x}}\,dx\;=\;2\left({\sqrt {ax+b}}-{\sqrt {b}}\tanh ^{-1}{\sqrt {\frac {ax+b}{b}}}\right)} {\displaystyle \int {\frac {x^{n}}{\sqrt {ax+b}}}\,dx\;=\;{\frac {2}{a}}\left(x^{n+1}{\sqrt {ax+b}}+bx^{n}{\sqrt {ax+b}}-nb\int {\frac {x^{n-1}}{\sqrt {ax+b}}}\right)} {\displaystyle \int x^{n}{\sqrt {ax+b}}\,dx\;=\;{\frac {2}{2n+1}}\left(x^{n+1}{\sqrt {ax+b}}+bx^{n}{\sqrt {ax+b}}-nb\int x^{n-1}{\sqrt {ax+b}}\,dx\right)} / [Gn]= 1/ Gn [ k[pr] ph] = de onde os valores positivos de {\displaystyle \cosh ^{-1}\left|{\frac {x}{a}}\right|} são para retirar.
Comentários
Postar um comentário